Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397232

RESUMO

Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.


Assuntos
Neurogênese , Fatores de Transcrição SOXC , Proteínas de Xenopus , Xenopus laevis , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Domínios Proteicos
2.
Hum Mol Genet ; 33(1): 12-32, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712894

RESUMO

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.


Assuntos
Proteoma , Síndrome de Rett , Animais , Feminino , Humanos , Masculino , Camundongos , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteoma/genética , Proteoma/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
3.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37066332

RESUMO

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.

4.
Neuron ; 109(21): 3365-3367, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34358432

RESUMO

Are current diversity, equity, and inclusion initiatives addressing systemic issues? This article highlights the progress thus far and emphasizes the systemic and cultural shifts needed to support and retain historically excluded scientists.


Assuntos
Diversidade Cultural
5.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34312306

RESUMO

Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain remains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular systems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type in mice. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with analysis of single-cell mRNA sequencing (scRNAseq) could reveal the extent of mitochondrial compositional diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their function as monomers, such as the family of SLC25 transporters. We found that the proteome encompassing these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only segregate cell types and brain regions when the analysis was performed at the single-cell level. In fact, single-cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neurons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type-specific mechanisms in health and disease.


Assuntos
Genes Mitocondriais , Neurônios , Animais , Núcleo Celular , Hipocampo , Camundongos , Mitocôndrias/genética , Neurônios/metabolismo
6.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34081082

RESUMO

What mechanisms ensure the loading of a SNARE into a nascent carrier? In this issue, Bowman et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202005173) describe an unprecedented mechanism where two sorting complexes, AP-3 and BLOC-1, the latter bound to syntaxin 13, work as a fail-safe to recognize sorting signals in VAMP7, a membrane protein required for fusion to melanosomes. Their observations define one of the first examples of distributed robustness in membrane traffic mechanisms.


Assuntos
Melanossomas , Proteínas SNARE , Escuridão , Melanossomas/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo
8.
iScience ; 23(5): 101123, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32422592

RESUMO

Rare genetic diseases are the result of a continuous forward genetic screen that nature is conducting on humans. Here, we present epistemological and systems biology arguments highlighting the importance of studying these rare genetic diseases. We contend that the expanding catalog of mutations in ∼4,000 genes, which cause ∼6,500 diseases and their annotated phenotypes, offer a wide landscape for discovering fundamental mechanisms required for human development and involved in common diseases. Rare afflictions disproportionately affect the nervous system in children, but paradoxically, the majority of these disease-causing genes are evolutionarily ancient and ubiquitously expressed in human tissues. We propose that the biased prevalence of childhood rare diseases affecting nervous tissue results from the topological complexity of the protein interaction networks formed by ubiquitous and ancient proteins encoded by childhood disease genes. Finally, we illustrate these principles discussing Menkes disease, an example of the discovery power afforded by rare diseases.

9.
Front Genet ; 8: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344592

RESUMO

The neurodevelopmental factor dysbindin is required for synapse function and GABA interneuron development. Dysbindin protein levels are reduced in the hippocampus of schizophrenia patients. Mouse dysbindin genetic defects and other mouse models of neurodevelopmental disorders share defective GABAergic neurotransmission and, in several instances, a loss of parvalbumin-positive interneuron phenotypes. This suggests that mechanisms downstream of dysbindin deficiency, such as those affecting GABA interneurons, could inform pathways contributing to or ameliorating diverse neurodevelopmental disorders. Here we define the transcriptome of developing wild type and dysbindin null Bloc1s8sdy/sdy mouse hippocampus in order to identify mechanisms downstream dysbindin defects. The dysbindin mutant transcriptome revealed previously reported GABA parvalbumin interneuron defects. However, the Bloc1s8sdy/sdy transcriptome additionally uncovered changes in the expression of molecules controlling cellular excitability such as the cation-chloride cotransporters NKCC1, KCC2, and NCKX2 as well as the potassium channel subunits Kcne2 and Kcnj13. Our results suggest that dysbindin deficiency phenotypes, such as GABAergic defects, are modulated by the expression of molecules controlling the magnitude and cadence of neuronal excitability.

10.
Physiol Behav ; 172: 12-15, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423324

RESUMO

Depression is a common and debilitating mood disorder that impacts women more often than men. The mechanisms that result in depressive behaviors are not fully understood; however, the hippocampus has been noted as a key structure in the pathophysiology of depression. In addition to neural implications of depression, the cardiovascular system is impacted. Although not as commonly considered, the cerebrovasculature is critical to brain function, impacted by environmental stimuli, and is capable of altering neural function and thereby behavior. In the current study, we assessed the relationship between depressive behavior and a marker of vascularization of the hippocampus in adult female cynomolgus macaques (Macaca fascicularis). Similar to previously noted impacts on neuropil and glia, the depressed phenotype predicts a reduction in a marker of vascular length in the anterior hippocampus. These data reinforce the growing recognition of the effects of depression on vasculature and support further consideration of vascular endpoints in studies aimed at the elucidation of the mechanisms underlying depression.


Assuntos
Depressão/patologia , Modelos Animais de Doenças , Hipocampo/irrigação sanguínea , Animais , Feminino , Transportador de Glucose Tipo 1/metabolismo , Imuno-Histoquímica , Macaca fascicularis
11.
Front Cell Neurosci ; 10: 218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713690

RESUMO

AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

12.
J Biol Chem ; 289(20): 14291-300, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24713699

RESUMO

Post-mortem analysis has revealed reduced levels of the protein dysbindin in the brains of those suffering from the neurodevelopmental disorder schizophrenia. Consequently, mechanisms controlling the cellular levels of dysbindin and its interacting partners may participate in neurodevelopmental processes impaired in that disorder. To address this question, we studied loss of function mutations in the genes encoding dysbindin and its interacting BLOC-1 subunits. We focused on BLOC-1 mutants affecting synapse composition and function in addition to their established systemic pigmentation, hematological, and lung phenotypes. We tested phenotypic homogeneity and gene dosage effects in the mouse null alleles muted (Bloc1s5(mu/mu)) and dysbindin (Bloc1s8(sdy/sdy)). Transcripts of NMDA receptor subunits and GABAergic interneuron markers, as well as expression of BLOC-1 subunit gene products, were affected differently in the brains of Bloc1s5(mu/mu) and Bloc1s8(sdy/sdy) mice. Unlike Bloc1s8(sdy/sdy), elimination of one or two copies of Bloc1s5 generated indistinguishable pallidin transcript phenotypes. We conclude that monogenic mutations abrogating the expression of a protein complex subunit differentially affect the expression of other complex transcripts and polypeptides as well as their downstream effectors. We propose that the genetic disruption of different subunits of protein complexes and combinations thereof diversifies phenotypic presentation of pathway deficiencies, contributing to the wide phenotypic spectrum and complexity of neurodevelopmental disorders.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Fenótipo , Subunidades Proteicas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Disbindina , Proteínas Associadas à Distrofina , Hipocampo/metabolismo , Humanos , Camundongos , Proteínas Mutantes/genética , Neurotransmissores/metabolismo , Pigmentação/genética , Subunidades Proteicas/genética , Esquizofrenia/etiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcrição Gênica/genética , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...